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Abstract: We consider user to cell association in a het-
erogeneous network with a mix of LTE/3G and WiFi cells.
Individual user preferences are often neglected when a user
to cell association decision is made. In this paper we propose
use of a recommender system to inform the mapping of users
to cells. We demonstrate the effectiveness of the proposed
grouped-based user to cell associations for a set of syntheti-
cally generated user/cell ratings.

I. INTRODUCTION

In this paper we study the use of collaborative filtering based
recommender systems to assist users with wireless access
point selection. In metropolitan areas there is widespread avail-
ability of both cellular and WiFi services. LTE/3G coverage
is ubiquitous in urban areas. Many enterprises, schools, and
cities provide WiFi services to individuals. Hotspot directories
report large numbers of WiFi access points in urban areas,
e.g. jiwire in the US reports 400 to 1000 commercial WiFi
networks in each of the top ten U.S. metropolitan areas [1]
and the Fon service has aggregated more than 3 million access
points in the UK alone [2]. This is in addition to home-based
WiFi services. Currently almost all mobile devices possess
both cellular and WiFi interfaces, and smartphone users can,
and do, switch among different WiFi access points and their
cellular connection. Users therefore often have a great deal
of choice but, currently, little information on which to base
this decision other than the signal level bars displayed to
them by their handset. Note that from now on we will use
access point to interchangeably mean a WiFi access point or
a cellular connection since our recommendation approach is
agnostic to the wireless technology used. Unfortunately, signal
strength by itself is often not a good indicator of the usefulness
of an access point to a particular user: access points might
block certain applications [3], may have different terms and
conditions regarding user privacy, cost of the service etc and in
other ways may have poorer performance than that proclaimed
by the signal strength [4]. It is this observation which motivates
the provision of recommendations to a user as to which of
the access points available in a location are likely to be most
satisfactory for that particular user.

The setup we consider is illustrated schematically in Fig 1.
We have a set of n users and m access points. After user u
makes use of an access point v they rate the utility provided
to them – this is a matter of personal preference that reflects
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Fig. 1: Illustrating the setup considered. A user is in an area with
multiple access points (WiFi access points and LTE/3G cellular
connections). In the past the user has rated a subset of these access
points, as have other users. These ratings reflect user satisfaction and
take account of aspects such as cost, applications blocked/allowed,
congestion as well as signal strength. The aim is to use this data to
collaboratively recommend to a user the access points which they are
most likely to prefer.

the dollar price paid, ease of use, QoS, applications supported
and so on. Gathering these ratings together gives an n × m
ratings matrix R, where element Ruv is the rating by user u of
access point v. This matrix is typically sparse, since each user
individually may rate only a small number of access points.
Our aim is to estimate the missing entries in R, i.e. to provide
predictions of the ratings a user would make for access points
which are currently unrated. Those access points which are
predicted to have a high rating are then recommended to a
user. In addition to the sparseness of rating matrix R, which
is common in recommender systems, challenges include the
heterogeneity of the user population and the sensitivity of
ratings (and so recommendations) to user location. It is these
challenges which we seek to address in this paper.

Our main contributions are as follows. We propose a novel
matrix factorisation based recommender approach for use with
wireless access point data. This approach uses a mixture model
to capture sensitivity of access point ratings to user location
and clustering of users into a number of groups to capture user
heterogeneity while still allowing accurate predictions when
the ratings data is sparse. We evaluate the performance of
this approach for a range of network conditions, including a
realistic model of a downtown university campus.

II. RELATED WORK

The task of recommending cell selection based on learning
of user preferences has received very little attention in the
literature to date. Of course there exists an extensive body of
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research that highlight the benefits of offloading user traffic
to the WiFi or unlicensed LTE networks [5] - [6]. However,
the task of network selection is almnost always viewed as
a network-wide utility optimisation problem whereby the
network provider seeks to maximise data rates and/or min-
imise delays. This work rarely takes much account of the
requirements and preferences of the individual users. Today
different WiFi APs and cellular providers offer a variety of
services and a user can manually switch between different APs
in order to identify its preferred AP. Users are typically only
informed of the available access points and their associated
signal quality. A notable exception is [7] in which a more
sophisticated approach called WiFi-Reports is proposed. This
is a collaborative service that provides WiFi clients with
historical information about AP performance and application
support i.e. beyond just signal strength.

III. PRELIMINARIES

Matrix factorization approaches are a popular and successful
way of making recommendations. The ratings matrix R ∈
Rn×m is modelled as the product UTV of matrix U ∈ Rd×n
and matrix V ∈ Rd×m. The idea is that the entries in column
Vv of matrix V capture the characteristics of resource v as a
point in a latent d-dimensional feature space and the entries
of column Uu the weights that user u attaches to these, so that
the rating of resource u by user u is the inner product UTu Vv .
Importantly, d is much smaller than either n or m. It is this
which allows predictions to be made even when the matrix R
is sparse.

To estimate U and V a common approach is to adopt the
following statistical model. The rating supplied by user u for
resource v is a Gaussian random variable XRuv ∈ R with
mean UT

uV v and variance σ2. That is,

Prob(XRuv
= Ruv|Ũ ,V ) ∼ e−φuv(Ruv)/σ

2

where φuv(Ruv) := (Ruv − UTu Vv)2. Let O ⊂ {1, · · · , n} ×
{1, · · · ,m} denote the set of user-resource rating pairs that
are contributed by the users and ZO = {XRuv , (u, v) ∈ O},
RO = {Ruv, (u, v) ∈ O}. The conditional distribution over
these observed ratings is,

Prob(ZO = RO|U ,V ) ∼
∏

(u,v)∈O

e−φuv(Ruv)/σ
2

Assuming Gaussian priors for U and V with zero mean and
variance σ2

U and σ2
Ṽ

, respectively, the log-posterior is then

− 1

σ2

∑
(u,v)∈O

φuv(Ruv)−
1

σ2
U

trUTU − 1

σ2
V

trV TV + C (1)

where C is a normalising constant. We now estimate U
and V as the matrices which maximise this log-posterior.
Observe that since d is small this estimation can be carried
out successfully even when the set of observations O is small
(i.e. the observed elements of matrix R are sparse).

It is well known that users can often be grouped together by
their preferences. For example, users in the same group may
use similar mobile applications, have similar price sensitivity
and so on. Following [8] this can be captured by further

factorising matrix U as ŨP where Ũ ∈ Rd×p and P ∈ Rp×n.
Column Ũg captures the preferences of the g’th group of users
(referred to as a nym in [8]) and Pu the mapping from user u
to these groups. In [8] the elements of P are {0, 1} valued and
P is column stochastic (the columns sum to one) so that each
user is a member of a single group. By learning P as well as Ũ
and V based on the observed data we can carry out automatic
clustering of users into groups in parallel with factorising the
ratring matrix. With this change the log-posterior is now

− 1

σ2

∑
(u,v)∈O

φ̃uv(Ruv)−
1

σ2
Ũ

trŨ
T
Ũ − 1

σ2
V

trV TV + C (2)

with φ̃uv(Ruv) := (Ruv − (PŨ)TuVv)
2. To maximise the

log posterior (2), we can apply an iterative algorithm which
alternates between the following two steps:

1) Using the current estimates for the matrix of average
nym-item ratings R̃ and the number Λ(v) of users in
each nym who rate item v, estimate Ũ , V .

2) Given the current estimates for Ũ , V each user u
updates their column P u in P by solving
minPu∈I

∑
v∈V(u)(Ruv − P T

u Ũ
T
V v)

2 where I =
{ei, i = 1, p}, ei the vector for which element i equals
1 and all other elements equal to 0.

IV. RECOMMENDING WIRELESS ACCESS POINTS

Our problem differs in a number of significant ways from
the standard matrix factorisation setup outlined above. Perhaps
the most important difference is that we expect the rating
assigned by a user to an access point to depend on the user’s
location. Namely, when close to an access point we expect that
the rating may be higher than when further away. We do not,
therefore, have a single rating by a user for an access point
and cannot construct a single rating matrix R of user-item
ratings.

A. Location-based Mixture Model

To accommodate this location dependence we propose the
following mixture model approach. We begin by dividing
the geographical area A of interest into a set of (possibly
overlapping) smaller patches Ai ⊂ A, i = 1, 2, . . . , q such that
∪qi=1Ai = A. These patches might, for example, be selected
to be centered on regions where the WiFi access points are
most dense or based on local geographical knowledge. The

Ruv =

q∑
i=1

d(u, i)∑q
j=1 d(u, j)

Ri,uv (3)

where Ri ∈ Rn×m is a rating matrix associated with patch Ai
(ratings made when users are located in patch i), and d(u, i) is
the distance between the current position of user u and patch i.
We will return to the choice of an appropriate distance metric
shortly. Decomposing Ri as UTV i and assuming Gaussian
priors on U , V i and Gaussian noise on the ratings the log-
posterior is

− 1

σ2

∑
(u,v)∈O

ψuv(Ruv)−
1

σ2
Ũ

q∑
i=1

trUTU − 1

σ2
V

q∑
i=1

trV T
i V i + C

(4)
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with ψuv(Ruv) := (Ruv −
∑q
i=1

d(u,i)∑q
j=1 d(u,j)

UT
u (V i)v)

2.
To allow automatic clustering of users into groups (which

we refer to as automated group learning) we further factorise
U as ŨP where Ũ ∈ Rd×p and P ∈ Rp×n. With this change
the log-posterior becomes

− 1

σ2

∑
(u,v)∈O

ψ̃uv(Ruv)−
1

σ2
Ũ

q∑
i=1

trŨ
T
Ũ − 1

σ2
V

q∑
i=1

trV T
i V i + C

(5)

with

ψ̃uv(Ruv) := (Ruv − (ŨP )Tu

q∑
i=1

d(u, i)∑q
j=1 d(u, j)

(V i)v)
2 (6)

Note that we use the same matrix P mapping from users to
groups for all patches Ai since we assume user preferences do
not change significantly with location. User preferences may,
of course, vary with their role which in turn may vary with
location, e.g. when at home and when at the workplace, but
we can capture this within our model by treating a change in
role as effectively as the introduction of a new user.

B. Learning Algorithm

We assume1 that the set of patches Ai, i = 1, . . . , q is
given and also the distance metric d(u, i). This allows existing
matrix factorisation approaches to be applied in a relatively
straightforward manner. Namely, to maximise the log posterior
(5), we can apply an iterative algorithm which alternates
between the following two steps:

1) Using the current estimates for the matrix of group-item
ratings R̃i := Ũ

T
V i in patch Ai and the number Λ(v)

of users in each group who rate item v, estimate each
of Ũ , V i, i = 1, . . . , q in turn. That is, we first hold
V i, i = 1, . . . , q fixed and estimate Ũ then hold Ũ
fixed and estimate V i in turn for i = 1, . . . , q. Each
of these optimisations is convex and, indeed, is just a
least squares problem and so its solution is known in
closed-form.

2) Given the current estimates for Ũ , V i each user u
updates their column P u in P by solving

min
Pu∈I

∑
v∈V(u)

(Ruv − P T
u Ũ

T
q∑

i=1

d(u, i)∑q
j=1 d(u, j)

(V i)v)
2 (7)

where2 I = {ei, i = 1, p}, ei the vector for which
element i equals 1 and all other elements equal to 0. This
optimisation is non-convex but can be trivially solved

1Local geographical information is often available that makes defining the
patches Ai relatively straightforward e.g. using knowledge of buildings with
many access points where users tend to congregate. Alternatively, clustering
approaches such as k-nearest neighbours might be used to induce patches
based on measurements but we leave this as future work.

2Note that it is straightforward to extend consideration to vectors P u which
are not restricted to be (0, 1) valued but this comes at the cost of increased
computational complexity and potentially also reduced privacy since when
P u is (0, 1) valued step 2 can be efficiently carried out locally within a
users mobile handset. Although we do not consider privacy further here due
to lack of space, it is increasingly recognised as being an important issue in
recommender systems e.g. see [8] and references therein.

by simply calculating the objective for each element in
(small) set I and selecting the lowest valued.

C. Convergence

We omit the proof for sake of brevity but it can be readily
verified that each step of the learning algorithm in Section
IV-B is a descent update. Hence, the algorithm is guaranteed
to converge to a stationary point of the log-posterior. Since
the log-posterior is non-convex (even though it is convex in
P , Ũ , V i, i = 1, . . . , q individually it is not jointly convex in
these matrices) we have no guarantee that the stationary point
to which the algorithm converges is not a local minimum or
even a saddle point. However, by starting from a number of
different initial conditions we can gain some confidence in its
convergence to a reasonable point and, as we will see in the
next section, experimental studies indicate that convergence is
typically both fast and to a reasonable minimum.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed access point
recommender system with automatic group learning using
synthetic datasets, i.e. where we know the ground truth.

A. User Rating Model

For evaluation purposes we model the rating Ru,a of access
point a by user u located in patch Ai as

Ri,ua = si,ua − Cu (8)

where si,ua is the data rate of user u when using access point
a from patch Ai and Cu denotes the cost of user u (e.g. the
cost charged for data access).

Having the user rating depend on the achieved rate si,ua
is natural. For our evaluation we assume that users belong to
one of two groups, namely have either Cu := 0 or Cu := 25.
This allows us to capture, albeit in a crude way, users with
differing price sensitivities. Users are assigned uniformly at
random to one of these two groups. This simple model neglects
the impact of e.g. blocking of certain applications by access
points, but can be readily extended to include such effects.

B. Small Geographic Area

We begin by considering a small geographic area corre-
sponding to a single patch Ai within which user ratings
are captured by rating matrix Ri. We will consider a more
accurate path loss model shortly, but initially we let the rate
sua of user u when using access point a be drawn from a
Gaussian distribution with mean µs and standard deviation
σs. Fig 2 illustrates the corresponding user ratings (9) for two
example realisations. In the left-hand plot the variance σs of
the rates sua is relatively small and the presence of two groups
of users is evident. In the right-hand plot the variance in the
rates is higher with the result that the user ratings are also
more variable.

Unless otherwise stated we use the network settings and
recommender system parameters summarised in Table I. We
measure the performance of the recommender system by
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Fig. 2: Illustrating the full user ratings matrix when µs = 50 Mbps.

Parameter Value
Network
Number of cells (m) 20
Mean users’ throughput (µs) 50
Standard deviation of users’ throughput (σs) 10
Learning Algorithm
Number of groups (p) 2
Dimension of the feature space (d) 2
Number of runs 10

TABLE I: Network and recommender system parameters.

holding back a subset consisting of 20% of the ratings selected
uniformly at radnom without replacement and then calculating
the root mean square (RMSE) between the predicted ratings∑q
i=1

d(u,i)∑q
j=1 d(u,j)

UTV i and true user ratings R in this subset.
Results shown are the mean and standard deviations over at
least 10 random realizations.

1) Prediction error vs. number of groups used and sparsity
of ratings: Figure 3(a) illustrates the impact of the number of
groups used on the automatic group learning algorithm (i.e.
when grouping matrix P is estimated and the dimension of P
is varied). It can the seen from Figure 3(a) that as the number
of groups used is increased from 1 to 2 there is a sharp drop
in the RMSE, as might be expected. As the number of groups
used is increased further, the RMSE increases slightly since the
number of groups is now larger than the true number of user
groups. Also shown for comparison is the RMSE obtained
when using ordinary matrix factorisation (P is held equal
to the identity matrix I , corresponding to each user being
assigned to their own group). It can be seem that this RMSE
is slightly higher than that with automatic group learning and
that as the number of groups is increased the RMSE with
automatic group learning rises towards the value for ordinary
matrix factorisation.

While Fig 2 shows the full rating matrix in practice each
user typically only rates a relatively small number of access
points and so the observed ratings matrix is sparse (has many
missing entries). We evaluate the impact of the degree of
sparsity on recommender performance by removing random
subsets of the ratings in each row. The ratio of the removed
ratings to the size of the ratings matrix is referred to as the
missing values ratio. When this is zero then the full rating
matrix is observed, when it is close to one then only very few
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Fig. 3: RMSE of the recommender system predictions vs. the number
of groups p used and the missing values ratio. m = 20 access points,
n = 1000 users. In (b) with automatic group learning p = 2 is used.
In legend BLC denotes automatic group learning and MF ordinary
matrix factorisation.
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Fig. 4: RMSE of the recommender system predictions with automatic
group learning vs. the number of ratings and the impact of the number
of users n on the RMSE vs the missing values ratio. Unless otherwise
stated m = 20, n = 1000, p = 2.

user ratings are observed. In online recommender systems a
missing values ratio of 90% or greater is common.

Figure 3(b) plots the measured RMSE vs the missing values
ratio for both automated group learning and ordinary matrix
factorisation. It can be seen that the RMSE rises sharply
for ordinary matrix factorisation as the missing values ratio
increases, but increases much more slowly when automatic
group learning is used. Indeed when group learning is not used
and the missing values ratio is 0.8 the error in the predictions
is comparable with the ratings themselves i.e the predictions
are largely useless. What is happening here is that learning
the group structure allows users in the same group to leverage
each others ratings when making predictions, and so greatly
increase accuracy especially when the ratings are sparse.
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Fig. 5: Convergence time of learning algorithm vs. number of access
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2) Prediction error vs. number of users and access points:
Fig 4(a) shows the impact on the prediction RMSE as the
number of user ratings available for training the recommender
system is varied and as the number of access points m
is varied. Note that the dimension of the ratings matrix R
changes as m is varied but by holding the number of user
ratings available constant we can still directly compare RMSEs
as m varies. It can be seen from Fig 4(a) that the RMSE
is insensitive to both the number of ratings (so long as this
number is not too small, as we know from Figure 3(b); the
lowest number of ratings used is 500 in Fig 4(a)) and the
number of access points.

Fig 4(b) plot the prediction RMSE vs the missing values
ratio and the number of users n.

The RMSE of the recommender system predictions is shown
in Fig 4 as the number of users n and the number of access
points m is varied. It can be seen that as the missing values
ratio is increased the prediction error tends to increase, as
might be expected. It can also be seen that as the number
of users increases the prediction error tends to decrease,
although this effect is relatively small and also diminishes as
n increases.

3) Convergence Time: Fig 5 shows the convergence time
of the learning algorithm as the size of the network (number of
access points, number of users) is varied. Results are shown for
commodity hardware (a standard MacBook laptop equipped
with an Intel Core i7 2.5GHz CPU having 6 MB L3 cache
and an NVIDIA GeForce GT750M 2GB GPU). The group
learning matrix factorisation approach lends itself readily to
parallelisation and use of the GPU. As a result it can be seen
from Fig 5 that it runs fairly quickly even for reasonably large
numbers of ratings e.g. with 100 APs and 25000 users there
are 2.5M ratings and the computations take about 1.5s in total.
It can also be seen from Fig 5 that the the convergence time
increases roughly linearly with the number of access points,
but sublinearly in the number of users. The latter is to be
expected since Ũi and V i scale with the number of groups
rather than the number of users.

C. Larger Area

We now extend consideration to a larger area of 300m2,
where the user rating of an access point is now strongly
dependent on their location. The access point locations are
selected in turn by drawing a position uniformly at random
within the area considered, this position is rejected if it is
within 10m of another AP and another position is draw,

Parameter Value
Network
Number of cells (m) 20
Carrier Frequency 2 GHz
Channel Bandwidth 20 MHz
Path Loss model micro urban [9]
AP transmit power 100 mW
UE noise power -80 dBm
Learning Algorithm
Number of groups (p) 2
Dimension of the feature space (d) 2
Number of runs 10

TABLE II: Network and learning algorithm parameters.
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Fig. 6: RMSE of the prediction error of group learning with n = 1000
users vs. number of p of groups used and number q of patches used.
The sashed lines in plot (a) indicate results with ordinary matrix
factorisation. Unless otherwise stated m = 20, p = 2, q = 64. Full
ratings matrix used.

otherwise the position is retained and the location of the
next AP is considered. Users are located uniformly at random
within the area of interest. We use the path loss model from
3GPP standard [9]. The rates su,a are then calculated using
the standard Shannon formula for an AWGN channel. The
network parameters used are summarised in Table II.

We define patches Ai, i = 1, . . . , q by dividing the area into
a grid of q squares. Each user is mobile and can potentially
rate every access point from every patch, although in practice
we only observe a subset of these ratings. The rating of access
point a by user u located in patch Ai is calculated as

Ri,ua = min{40Mbps,max{1Mbp, si,ua}} − Cu (9)

That is, we cap the rate at 40Mbps and ensure that the
minimum is at least 1Mbps. In the recommender system we
select distance metric d(u, i) = 1 when user u is in the patch
Ai and d(u, i) = 0 otherwise.

We begin with a sanity check using the full matrix of ratings
for both training and testing (i.e. without a 20% hold-back
being used for testing). Fig 6(a) plots the measured RMSE
of the prediction error vs the number of groups used by the
automatic group learning approach. It can be seen that as
the number of groups increases from 1 to 2 there is a sharp
drop in the RMSE, as expected. Further, that the RMSE is
similar with both automatic group learning and ordinary matrix
factorisation. This confirms that both approaches are able to
model the full measured ratings matrix (i.e. with no missing
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observations) fairly well and with similar levels of accuracy.
Fig 6(b) plots the RMSE with automatic group learning as the
number of patches is increased. Here the full ratings matrix
is again observed, with each user rating every AP from every
patch so that for 100 patches, 20 APs and 1000 users there
are 100 × 20 × 1000 = 2M ratings. It can be seen that the
RMSE falls as the number of patches q is increased, as might
be expected since more fine grained information becomes
available as q increases. Results are shown for both 20 and
100 APs, and are much the same for both.

We now proceed to consider the impact of missing observa-
tions and to evaluate the predictive power of the recommender
system for data not used for training i.e. its generalisation
performance. A subset of 20% of the full rating matrix is
selected unformly at random without replacement to be held
back and used for testing of prediction accuracy. Of the
remaining 80% of ratings a subset are selected unformly at
random without replacement according to a specified missing
values ratio (a missing values ratio of 0.5 corresponding to
drawing 50% of these ratings).

Fig 7(a) plots the prediction RMSE as the missing values
ratio is varied. Results are shown both with automated group
learning and with ordinary matrix factorisation. It can be seen
that, similarly to Figure 3(b), when automated group learning
is used the RMSE increases much more slowly as the number
of missing values increases.

Fig 7(b) shows the prediction RMSE as the number of
ratings is held constant and the number of patches is varied.
Note that the setup differs from Fig 6(b) not only in that a
20% hold-back is used for testing but also in that the number
of ratings is held constant at 10,000 whereas in Fig 6(b) the
number of ratings varies with the number of patches used (the
full ratings matrix is of size q ×m × n). Hence, in Fig 7(b)
the missing values ratio increases as the number of patches
increases. This is closer to the situation in reality, and leads
to a trade-off whereby as the patch size is made smaller (i.e.
the number of patches is increased) the diversity of ratings
for an access point due to location variations can be expected
to decrease, tending to improve prediction accuracy, but at
the same time the number of observed user ratings in each
patch will also tend to decrease, tending to degrade prediction
accuracy. As a result, we observe in Fig 7(b) that the RMSE
exhibits a minimum. For 10,000 ratings when ordinary matrix
factorisation is used the minimum is when the number of
patches is around q = 36 and when automated group learning
is used the minimum is at around q = 64 patches. The increase
in the optimum with automated group learning is due to its
better performance when ratings are sparse, see Fig 7(a).

We can gain some more insight into the prediction perfor-
mance from Figure 8. Figure 8(a) plots the true and predicted
ratings for one example AP as those users with Cu = 0 move
through a sequence of patches running through the middle of
the area considered (the physical locations are indicated by the
x and y axes of the plot). It can be seen that the true ratings
peak around the centre-back of the plot and decrease smoothly
as the distance from the AP increases, in line with the path loss
model used. In contrast, within each patch the predicted ratings
for users sharing the same group are essentially constant, with
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Fig. 7: RMSE of the prediction error vs sparsity of measured ratings
available. Data shown both with group learning (indicated as BLC)
and ordinary matrix factorisation (indicated as MF). Unless otherwise
stated, n = 1000 users, m = 20 APs, q = 64 patches, p = 2 groups.
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Fig. 8: Comparison of predicted and actual ratings for a representative
AP and users located in a single patch (location indicated on the x
and y axes). For n = 1000 users, m = 20 APs, q = 64 patches,
p = 2 groups and with group learning.

this constant value roughly equal to the mean rating of users
from that group in that patch. Since the recommender system
lacks location information more detailed than the patch in
which a user is located, this clearly is a sensible strategy and
serves to give some confidence that the recommender system
is indeed working in a reasonable fashion.

Figure 8(b) plots the distribution of prediction errors over
all ratings (not the RMSE but the error for each individual
rating). It can be seen that the errors are concentrated around
zero and that the probability of exceeding 2 is less than 1%.

VI. CONCLUSIONS

In this paper we consider user to cell association in a
wireless network with multiple access points. We propose use
of a recommender system to inform the mapping of users
to cells. We demonstrate the effectiveness of the proposed
grouped-based user to cell associations for a set of syntheti-
cally generated user/cell ratings.
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